Wednesday, 15 October 2014

Biomaterials of the Future

Nanofabricated hairs that self-assemble into different structures on command. From Harvard WYSS Institute

Science fiction may be getting closer to reality in the future of materials.

The WYSS Institute for Biologically Inspired Engineering  at Harvard is an interdisciplinary “alliance” between the internally diverse schools of Medicine, Engineering, Arts & Sciences, as well as a broad array of Universities and Research Centres. Their focus is the development of new materials using the deep, micro scale principles of self assembling natural materials, and the vision of their research is pretty wild.

The deceptively simple mission statement of the WYSS Institute reveals incredible goals:
The Wyss Institute aims to discover the engineering principles that Nature uses to build living things, and harnesses these insights to create biologically inspired materials and devices that will revolutionize healthcare and create a more sustainable world… Understanding of how living systems build, recycle, and control is also guiding efforts focused on development of entirely new approaches for constructing buildings, converting energy, controlling manufacturing, and improving our environment.

The self assembled future

I first heard about the idea of nano robots from William Gibson’s incredible science fiction novels. He envisioned buildings silently self assembling out of landfill. Tiny invisible robots that digested waste into construction materials to be woven together, molecule by molecule, into final structures. The conjured scenario is eery, haunting, and mesmerizing, and like all good science fiction, is actually now a realistic discussion occurring in research labs. It is mind blowing finding researchers trying to unearth the secrets that might transform fantasy to fact.

Here are some sample snippets of research:
Faculty member William Shih and Technology Development Fellow Shawn Douglas, along with a colleague at the Technische Universitaet Muenchen, published a report in Science, on Aug. 7, 2009, demonstrating their ability to engineer DNA into complex shapes that twist and curve.

Wyss Institute researchers are at the forefront of work in DNA Origami, a technique for folding pieces of DNA into shapes that may one day prove useful in manufacturing and medicine. The hope is that these incredibly tiny forms could carry cancer drugs deep inside the body or work as cogs in a molecular machine.

Venus’ flower basket, a deep-sea sponge, is made of natural glass, each strand of which is composed of bundles of threads embedded like reinforced concrete. Each square window measures about 2x2 millimeters. (Joanna Aizenberg)

Wyss Institute scientists are exploring the way in which sponges produce sophisticated glass structures that are illuminated by a crown of optical fibers into which light is concentrated by lenses… The naturally formed glass is thousands of times stronger than its man-made counterpart and is produced at ambient temperatures — without energy-intensive furnaces. 

The skeleton of the brittlestar – a cousin of the starfish – literally sees through its bones. The Aizenberg lab is trying to recreate those properties in a bioinspired material. (By Joanna Aizenberg)

What materials do we need?

I couldn’t sleep this morning, having discovered this research institute late last night I had dreams all morning of buildings that breathe, walls that sense and medical products self assembling in my blood stream. It got me thinking, while these visions are wild and fantastical, what might be some of the more practical goals to aim for? High end research always seems to fall into the categories of medical applications and futuristic architecture. But perhaps there are some very simple starting points.

Expanded Polystyrene:
Image from wikipedia, by "Dubaj"

EPS is highly toxic, terrible to recycle or reuse and everywhere. The ubiquitous packaging materials is inside almost every carton transporting fragile goods. Imagine a lightweight, impact resistant, stable material, assembled from basic chemistry, rather than the complex long chain hydrocarbons that make up polystyrene. This material could be biodegradable, feeding into a natural composting processing system, or infinitely renewable if the self assembly properties can be repeated.

Building Insulation:
Image from Ambisol.

The insulation materials used most commonly in architecture are hazardous glass fibres, capable of penetrating the lungs and with extraordinary long life cycles. Alternative solutions are hard to come by due to the never-ending battle against bugs and te build up of mould. The use of natural fibres such as wool are no better; they are treated by increasingly hazardous chemicals to prevent the invasion from nature, making the end result comparatively toxic to the fibreglass. Outlined in the research above is the creation of high technology self assembling fibres, what about some basic fibres to begin with? Perhaps there is a shape that could be formed at nano scales that would deter fungus and critters, voiding the need for chemicals? An enormous market with potential for a huge impact.

It feels odd to be exploring the more pragmatic options, when I am usually falling in love with the grand visions, but perhaps the break through moment for a research institute like WYSS might me something far simpler than originally expected. I’d love to run an ideation session with their research… wouldn’t that be amazing…

Electricty Generating Dance Floors and Other Miracles of Piezoelectricity

Even if the planet doubled the amount of solar and wind power available tomorrow, there would still be a shortage of clean electricity. We need to grab energy from wherever we can find it, which is why piezoelectricity—the charge that gathers in solid materials like crystal and ceramic in response to strain—has recently begun to pique the interest of entrepreneurs and scientists alike.
A number of materials are piezoelectric, including topaz, quartz, cane sugar, and tourmaline. That means a charge begins accumulating inside these materials when pressure is applied. Piezoelectrics are already commonly used in a number of applications. Quartz clocks, for example, rely on piezoelectricity for power, as do many sensors, lighters, and actuators. But these are the old uses for piezoelectricity. Scientists today have much more interesting piezoelectric plans in mind.
One of the most popular uses for piezoelectricity in the past few years relies on roads and sidewalks. It all started in 2008 with Club Watt, a dance spot in the Netherlands dubbed the world's first sustainable dance club. The club installed piezoelectric materials in its dance floor to turn patrons' moves into electricity that is used to change the color of the floor's surface.
After Club Watt, the piezoelectric floors kept coming. A Tokyo railway station installed a piezoelectric floor that uses kinetic energy to generate 1,400 kW of energy per day—enough to power ticket gates and displays. Toulouse, France, recently became the first city to put pressure-sensitive piezoelectric modules on the sidewalk, generating enough energy to power streetlamps. And the United Kingdom plans to install power-generating tiles on London streets to light up bus stops and pedestrian crossings.
Piezoelectrics are also increasingly becoming common on roads. In 2009, a British supermarket installed kinetic road plates that collect energy from customers driving over road bumps in the store parking lot. The road plates are pushed down by vehicle weight, which creates a rocking motion that turns generators. The system is used to power the supermarket's checkout lines.
In Israel, a company called Innowattech is installing strips of asphalt embedded with piezoelectric materials. According to the company, the generators could produce 1 MWh of electricity from a four lane highway, or enough to power 2,500 homes.
The technology just keeps getting better, too. Last year, Princeton University researchers combined silicone and nanoribbons of lead zirconate titanate to create PZT, an ultra-efficient piezoelectric material that can convert up to 80 percent of mechanical energy into electricity. PZT is 100 times more efficient than quartz. It's so efficient, in fact, that the material could be used to harness energy from the minute vibrations found in items like shoes and clothing. That means a piezoelectric-equipped shirt could potentially charge up your cell phone after a day of  activity.
Piezoelectric sidewalks, roads, and clothing items haven't taken off in a big way quite yet, but they probably will soon. As we become more reliant on having fully-charged gadgets with us at all times, a shirt or pair of shoes that can prevent a device from dying will be incredibly valuable.

Bosch offers $3,000 wireless chargers to Leaf and Volt owners


Bosch recently released an $450 charging solution for EVs, but if you want to go wireless, it's going to cost you a lot more. The company has formed an exclusive partnership with Evatran for the distribution and installation of its wireless chargers for the Nissan Leaf and Chevy Volt. Each Plugless Level 2 Electric Vehicle Charging System (now that's a tongue-twister) costs $2,998 for the Volt and $3,098 for the Leaf, not including taxes and installation fees. It's comprised of a wall-mounted control panel that provides electricity to the parking pad, which transmits power to your vehicle. You've got to admit it's convenient when all you have to do to juice up is park on top of the pad, but would you actually shell out that much cash in the name of convenience when plugging a (cheaper) charger in is no Herculean task?

Tuesday, 14 October 2014

Future of Hydropower: Damless Hydro?

Hydroelectricity was one of the very first technological developments made in US energy industry. Since the first hydroelectric plant opened in 1887 in San Bernadino, California, hydroelectricity had become one of the major sources of electricity production in US as shown in figure 1, second only to coal in its early days [2]. However, the contribution to the total US electricity production from hydropower has been decreasing consistently over the last few decades. The US hydropower has never quite reached its potential.

Figure 1: Timeline of various power production plants in US (1949-2012) [1]

At large scales, hydroelectricity is the most efficient power production technique, reaching efficiency of up to 95% as shown in figure 2 [3],[4]. It is a renewable source of energy which, in fact, helps fight climate change since it does not produce harmful gaseous emissions at a rate anywhere close to what other power plants operating on coal, gas, or oil produce. The advantages of hydropower are countless. It is fueled by water and therefore, it is free and abundant. The fact that it does not rely on any other natural resources, and that water cycle around the world is capable of constant and reliable electricity production, makes it extremely reliable. It is available when needed and can be easily controlled. In addition, large dams built for hydropower plants are a huge asset at the times of flood and drought. They also help maintain the quality of water [5].

Figure 2: Efficiency of various power plants

On the other hand, there are some downsides of hydropower plants, the most problematic of which is the construction of huge dams. Expensive to build dams, not only require operation of such power plants for decades for the payback, but they also cause some alarming environmental concerns. They can cause some serious geological damage. They require accumulation of large water bodies and therefore destroy the habitat around them. Construction of large dams can also alter the natural flow of water, fish migration, and eventually the surrounding ecosystem [6]. Upstream migration of fish can be severely impacted because of this. Hence, it is obvious that most of the concerns relating hydropower are because of the dams.

But, is there a way around this whole issue of building dams? Can we take the most efficient power production system we have and turn it into an even more efficient one? The answer to that maybe a damless hydropower. Researchers have shown that hydropower can be generated without establishment of such dams and therefore negating all the concerns that arise with them.

The only difference between a dam-based and a dam-free hydropower is the presence or the absence of a dam. The same water current turns the turbines which generate electricity. As shown in figure 3, damless hydropower does not need a dam to create pressure and uses natural flow of the river or tide to produce electricity. Such turbines are low head installations that have very minimal environmental impact. The developers of damless hydropower also claim that the blades turn slow enough to allow fish to escape, and therefore do not affect the fish migration the way dams do. Another important advantage of damless hydropower is that the turbines can be site-based and optimized for performing in certain unique situations. Each power plant can be studied on a site by site basis for optimal performance.

Figure 3: A typical damless hydro turbine [7]

Damless hydroelectric production has been studied for quite a while now and researchers have found that installing electricity generating turbines under water is practical. For example, Hydro Green Energy, LLC has been testing a damless hydroelectric power plant in Hastings, Minnesota. A 2007 Electric Power Research Institute study estimated that there is a potential for adding a 300 megawatts of damless hydropower in the US by 2025. Federal Energy Regulatory Commission (FERC) could play an important role in the establishment of damless hydropower in the future since the same challenges of federal and state approvals that apply to the existing dams, apply to the new technologies as well [8].One interesting observation is that the US government is so focused at other renewable sources of energy like wind and solar, it may be overlooking the contributing potential of hydroelectricity. More investment into damless hydro is key to its development into a feasible renewable and clean alternative for power production.

References:

England market produces green energy with 'kinetic plates'

Sainsbury’s market of England has installed ‘kinetic energy’ plates in the parking lot of it’s store in Gloucester. The plates are an experiment with a newer energy producing technology. 


The plates create as much as 30kWh of energy as cars drive over them. The weight of the cars puts pressure on the plates creating kinetic energy to run a generator. The current is used to power the store and will lower the energy consumption of the market.
If the tests are successful, Sainsbury’s hopes to install these plates, and other green energy technologies in all its stores. The kinetic plates are supposed to pay for themselves in under two years, which is a lot better than many other alternative energy sources.
The kinetic plates are only one of many green energy projects that Sainsbury’s hopes to incorporate in its stores. The Gloucester market also has a rainwater collector that is used to flush toilets, and solar panels used to heat water. A spokeswoman for the market said that 100% of the hot water will be created by the thermal panels in the summer.
Imagine, kinetic energy plates being installed on all indoor surfaces and using power from our walking to light and refrigerate. Kinetic plates have also been looked at for sidewalk streets in busy parts of the country.

Field Test on Wireless Charging of Electric Vehicles by Daimler and Conductix-Wampfler

The idea sounds as easy as convincing: Instead of „filling up“ an electric vehicle by cable the driver parks conveniently above the power source when using contactless inductive charging of the battery. The charging process starts automatically as soon as the car is parked over a charging point. Additional advantages come to the fore especially in public areas: The inductive charging points can be integrated into the ground safe from vandalism.




Currently widespread inductive charging is still a long way off. Yet to test feasibility of such a system Daimler and Conductix-Wampfler have elaborated the basics for wireless charging of electric vehicles in a research project cofunded by the Federal Ministry for the Environment, Nature Conservation and Nuclear Safety (Bundesministerium für Umwelt, Naturschutz und Reaktorsicherheit, BMU). Main target of the project “wireless charging” was a safe, automotive grade charging system with maximum efficiency and minimum weight and package.


More Comfort and High Efficiency

Goal of the field test was to evaluate everyday-usability of wireless charging as well as to probe advantages and disadvantages in comparison with charging by plug and cable. As early as a few days into the field test the advantages customer comfort and charging safety by the automated charging process became apparent. - See more at: 

The testing focused on the basic charging process. Efficiency of the system admittedly still doesn’t match charging by cable, but is with 90 percent already very promising and only slightly beneath cable based solutions, if all components from socket to battery are taken into account. 
There was an evaluation of the first “driving-experiences” with study participants who had to “drive onto the optimum charging position”. After two or three exercise runs this could be well achieved supported by parking assistance functions. The system tolerates smaller deviations within the range of a few centimeters without noteworthy loss of charging efficiency or transferable power. Also, the system showed already good results regarding electro magnetic compatibility. It is the task of future engineering work to optimize this as well as to improve efficiency and to develop solutions for a series application.

Technology and Vehicle

The protototypes built within the project on the basis of the B-Class E-CELL with range extender are equipped with an electronic rectifier and a collector coil integrated into the underbody cover. Main components on the infrastructure side are the supplying electronic and the charging coil, which was realized in two variants – as an above ground and beneath ground coil.

Besides the wireless energy transfer other functional aspects are the wireless communication between infrastructure and car, the driver assistance function “driving onto the position above the charging coil”, the automatic start of the charging process and the vehicle identification. In the area between the coils an object detection avoids risks by warmed metal items.

Detailed scientific studies generated the foundation for the first layout of the inductive transfer components with automotive specific requirements and their optimization regarding package and weight. Comprehensive system simulations served to validate the designs.

Conductix-Wampfler has developed all components of the system and could rely during the process on comprehensive experience with inductice power transfer in manufacturing automation as well as on know-how from the wireless charging of electric busses in Genoa and Turin. These are in operation since 2003.

Daimler has defined the functions of the charging system on the car´s side and realized the assistance system for driver support. The system was integrated into two vehicles with range extender, nameplate Mercedes-Benz B-Class E-CELL Plus. The coil integration within the underbody cover of the cars was designed and supplied by Röchling Automotive.

After the prototype vehicles had been built the complete system was mechanically and electrically integrated and taken into operation as a whole. Two inductive charging stations are in the field at the Daimler-Engineering-Location Böblingen-Hulb and are intensively used for the everyday-tests.

Résumé and Outlook

First conclusions confirm the considerable gain of comfort in comparison with cable based charging and that inductive charging is suitable in principle. The potential optimization regarding package, weight and integration in future vehicle model lines is identified and will accordingly be further developed.

At the same time an evaluation is done on new common projects with potential inductive charging applications in small commercial vehicles and busses. The results of the current tests are important to national and international standardization activities – with the aim to guarantee interoperability of inductive charging systems of different suppliers and vehicle manufacturers.

Monday, 6 October 2014

History of East India Dock

Following the successful creation of the West India Docks which opened in 1802, an Act of Parliament in 1803 set up The East India Dock Company, promoted by the Honourable East India Company. Joseph Cotton was chairman of the Dock Company from 1803.



The docks, designed by engineer Ralph Walker,were located to the north-east of the West India Docks. They were based on the existing Brunswick Dock, which had been used for fitting out and repairing ships as part of Blackwall Yard. The Brunswick Dock, which had originally been connected directly to the Thames to the south, became the Export Dock. To the north the company built a larger 18-acre (7.3 ha) Import Dock. Both were connected to the Thames via an eastern entrance basin.
The company was rapidly profitable, with commodities such as tea, spices, indigo, silk and Persian carpets. The tea trade alone was worth £30m a year. The docks spawned further local industry, with spice merchants and pepper grinders setting up around the dock to process goods.
Brunswick Wharf Power Station 1974
In 1838 the East and West India companies merged. In 1886, in the last act of a ruinous game of leapfrog with the London & St Katharine Dock Company, they built the Tilbury Docks. In 1909 the docks were taken over by the Port of London Authority, along with the other enclosed docks.
While much smaller than the West India Docks or the later Royal Docks, the East India Docks could still handle East Indiamen of 1000 tons and up to 250 ships at one time. However the advent of steam power and larger ships reduced the importance of this dock and by the mid-20th century most of the trade had left.
Brunswick Dock, which became the Export Dock
The docks played a key role in the Second World War as a location for constructing the floating Mulberry harbours used by the Allies to support the D-Day landings in France.
Following the Second World War, in which all the docks were badly damaged, the East India Docks were confined to occasional Channel Islands traffic and to the maintenance of dredger equipment etc.
Brunswick Wharf Power Station was built on the site of the Export Dock in stages between 1946 and 1956. This was a monumental brick structure with fluted concrete chimneys after the style of Gilbert Scott's designs for Battersea and Bankside. It ceased generation in 1984 and was demolished in the late 1980s.
The docks were the first London docks to close, in 1967.


East India Docks today



Today the docks have been mostly filled in. Only the entrance basin remains, as a wildlife refuge and an attractive local amenity. The area is predominantly residential with several major developments either complete or under construction around it. One, the Leamouth Peninsula will form the western boundary of the dock, and is intended to be completed by 2012.

Ma Environment Design- Project Flow (Brief)

Research and inquiry to explore the concept of Flow. Create a concept for a 'Alternative Power Station' of the future, located at the East India Dock Basin (opposite O2 Arena).


Based on historic and geological continuities of the river Thames but East India Dock Basin in particular you will develop an insightful and critical thought on the concept Flow- its meanings. Exploring fluxes-influxes, utopias-dystopias in today's climate changing world. Research process will be developed through multiple experiments - prototypes, visualizations, collections, video, research, mock-ups, manifesto etc.

Diverse techniques and methodologies will be used to translate and realize the research results.

Dowsing, sound and visual frequencies, systems of surveillance, satellite imagery analysis, and digital representations.
Together with concept Flow, investigating buried treasures, trace fossil and geological systems, detect material waste, investigate biological energies, and explore sound and image forces of the place.

A future archaeology,  a landscape encapsulating a Future Natural System.