Monday, 22 December 2014

LEARNING CYCLE 3: Reflection & Self-Reflection


For cycle 3 of the project I am exploring the concept of Reflection & Self-reflection.


Being on board of a real live project – a research study and design development of a working space - you are asked to establish a critical analysis and practical development on the Future of working spaces and to define a boundary within Reflection & Self-reflection. 



Cycle 3's client will be Cerca


Cerca is a property tech startup that takes care of everything to do with finding your next home in London.
From searching and matching the right properties, to picking you up and guiding you on every viewing. We can advise and take care of all the paperwork and offer Cerca care for up to a year for anything property related after you’ve moved in.
We are making things simple and stress free whilst bringing creativity and innovation to the tradition property industry.




The goal is to design a new office for them in their current London office.

Core Values
Creating a simplified and transparent way for people to find a home.   
Positively contributing to the property industry and changing the game through innovation and tech.
Empowering our team members through personal and professional development, providing a meaningful workplace.

Target Market
We have a vast market which ranges from high net-worth sales clients to anyone who is looking for a home to rent in London. Both groups must feel the interior and exterior is appropriate whilst keeping true to the Cerca brand.

Outcome
To redesign the Cerca work space and client meetings area into an innovative office that reflects the brand identity but remains functional and inviting to our target market.

Keywords
Interactive, tech, approachable, fresh, new, innovative, high quality, colourful, experienced, brand atmosphere, not easily outdated.

Inspiration
Offices and companies like google/ apple/ Facebook- not a typical office/ young casual environment.

Functions the project must accommodate:
Working space/ seated meeting space/ kitchen/ bathroom/ coat room and storage
Good Lighting
Flexibility with company growth
Office equipment and wires
Front facing desk for greeting clients

The client has some idea suggestions for our design:
Some Ideas we have

The kitchen and toilet to be moved to the back corner which is currently a storage room.
A front meeting room (living room feel) for clients to be introduced to the company.

A glass open out front of the office to lead to the mews (in summer).




Saturday, 8 November 2014

LEARNING CYCLE 2: INTERDISCIPLINARY PROJECT: INTIMACY

Question:
“The way we communicate, exchange and interact has been drastically transformed as part of the constantly evolving digital landscape of information age. In the Cycle2 brief we ask you to engage with the notion of intimacy and create ideas, products, demonstrations that respond to the technologically mediated world. We are interested in human-centric solutions that critically engage not only with issues but also with new potentials of human intimacy. We want that you are sensitive to one of the current emerging debates in the world of sustainability, smart products and cities, open source movement, environmental conditions, global epidemics or expansion of human cognition/condition. Is there situations where intimacy has been lost, is there a way to re-cover it or can we invent new solutions where novel ways of intimacy may be created? Analyse, speculate and re-think values and solutions. Explore the potentials and strength of your interdisciplinary team and produce a practical solution that is future sensitive yet offer thought-provoking insight to the world we live in.”

Introduction – what is intimacy

Intimacy

The Space in Me

There is a different definition of intimacy for everyone, indoors, outdoors, a specific space, a specific item, a song, a smell, almost everything can be related to an individual to feel intimate. But for most of us, there is a particular space that we feel intimate in, as the outside reflects what we feel inside of us.

Our group has decided to go down this direction, and our project is called ‘Space in Me’. We have taken the objective and decided to look into the spaces that are intimate to each and everyone one of us.

History
Everyone have this image in their head about the perfect home for them, it doesn't matter if it is rich in space, colour, plantation, technology etc. everyone have this image. What if you had the chance to design your own? How would you fill the place up? with your favourate drinks? with big tv, a collection of games? with endless supply of snacks?

I will fill it up with things that make me feel safe.
I made a collection of images as a moodboard showing the features I would like for my space





The group then got togehter and talked about how we want to design our spaces, Noor have a background in Interior, I helped Ansbert to create his space in 3D from his moodboard and a meeting to define all details.


I then helped everyone with their 3D animation flythrough in the end to connect the project.


Wednesday, 15 October 2014

Biomaterials of the Future

Nanofabricated hairs that self-assemble into different structures on command. From Harvard WYSS Institute

Science fiction may be getting closer to reality in the future of materials.

The WYSS Institute for Biologically Inspired Engineering  at Harvard is an interdisciplinary “alliance” between the internally diverse schools of Medicine, Engineering, Arts & Sciences, as well as a broad array of Universities and Research Centres. Their focus is the development of new materials using the deep, micro scale principles of self assembling natural materials, and the vision of their research is pretty wild.

The deceptively simple mission statement of the WYSS Institute reveals incredible goals:
The Wyss Institute aims to discover the engineering principles that Nature uses to build living things, and harnesses these insights to create biologically inspired materials and devices that will revolutionize healthcare and create a more sustainable world… Understanding of how living systems build, recycle, and control is also guiding efforts focused on development of entirely new approaches for constructing buildings, converting energy, controlling manufacturing, and improving our environment.

The self assembled future

I first heard about the idea of nano robots from William Gibson’s incredible science fiction novels. He envisioned buildings silently self assembling out of landfill. Tiny invisible robots that digested waste into construction materials to be woven together, molecule by molecule, into final structures. The conjured scenario is eery, haunting, and mesmerizing, and like all good science fiction, is actually now a realistic discussion occurring in research labs. It is mind blowing finding researchers trying to unearth the secrets that might transform fantasy to fact.

Here are some sample snippets of research:
Faculty member William Shih and Technology Development Fellow Shawn Douglas, along with a colleague at the Technische Universitaet Muenchen, published a report in Science, on Aug. 7, 2009, demonstrating their ability to engineer DNA into complex shapes that twist and curve.

Wyss Institute researchers are at the forefront of work in DNA Origami, a technique for folding pieces of DNA into shapes that may one day prove useful in manufacturing and medicine. The hope is that these incredibly tiny forms could carry cancer drugs deep inside the body or work as cogs in a molecular machine.

Venus’ flower basket, a deep-sea sponge, is made of natural glass, each strand of which is composed of bundles of threads embedded like reinforced concrete. Each square window measures about 2x2 millimeters. (Joanna Aizenberg)

Wyss Institute scientists are exploring the way in which sponges produce sophisticated glass structures that are illuminated by a crown of optical fibers into which light is concentrated by lenses… The naturally formed glass is thousands of times stronger than its man-made counterpart and is produced at ambient temperatures — without energy-intensive furnaces. 

The skeleton of the brittlestar – a cousin of the starfish – literally sees through its bones. The Aizenberg lab is trying to recreate those properties in a bioinspired material. (By Joanna Aizenberg)

What materials do we need?

I couldn’t sleep this morning, having discovered this research institute late last night I had dreams all morning of buildings that breathe, walls that sense and medical products self assembling in my blood stream. It got me thinking, while these visions are wild and fantastical, what might be some of the more practical goals to aim for? High end research always seems to fall into the categories of medical applications and futuristic architecture. But perhaps there are some very simple starting points.

Expanded Polystyrene:
Image from wikipedia, by "Dubaj"

EPS is highly toxic, terrible to recycle or reuse and everywhere. The ubiquitous packaging materials is inside almost every carton transporting fragile goods. Imagine a lightweight, impact resistant, stable material, assembled from basic chemistry, rather than the complex long chain hydrocarbons that make up polystyrene. This material could be biodegradable, feeding into a natural composting processing system, or infinitely renewable if the self assembly properties can be repeated.

Building Insulation:
Image from Ambisol.

The insulation materials used most commonly in architecture are hazardous glass fibres, capable of penetrating the lungs and with extraordinary long life cycles. Alternative solutions are hard to come by due to the never-ending battle against bugs and te build up of mould. The use of natural fibres such as wool are no better; they are treated by increasingly hazardous chemicals to prevent the invasion from nature, making the end result comparatively toxic to the fibreglass. Outlined in the research above is the creation of high technology self assembling fibres, what about some basic fibres to begin with? Perhaps there is a shape that could be formed at nano scales that would deter fungus and critters, voiding the need for chemicals? An enormous market with potential for a huge impact.

It feels odd to be exploring the more pragmatic options, when I am usually falling in love with the grand visions, but perhaps the break through moment for a research institute like WYSS might me something far simpler than originally expected. I’d love to run an ideation session with their research… wouldn’t that be amazing…

Electricty Generating Dance Floors and Other Miracles of Piezoelectricity

Even if the planet doubled the amount of solar and wind power available tomorrow, there would still be a shortage of clean electricity. We need to grab energy from wherever we can find it, which is why piezoelectricity—the charge that gathers in solid materials like crystal and ceramic in response to strain—has recently begun to pique the interest of entrepreneurs and scientists alike.
A number of materials are piezoelectric, including topaz, quartz, cane sugar, and tourmaline. That means a charge begins accumulating inside these materials when pressure is applied. Piezoelectrics are already commonly used in a number of applications. Quartz clocks, for example, rely on piezoelectricity for power, as do many sensors, lighters, and actuators. But these are the old uses for piezoelectricity. Scientists today have much more interesting piezoelectric plans in mind.
One of the most popular uses for piezoelectricity in the past few years relies on roads and sidewalks. It all started in 2008 with Club Watt, a dance spot in the Netherlands dubbed the world's first sustainable dance club. The club installed piezoelectric materials in its dance floor to turn patrons' moves into electricity that is used to change the color of the floor's surface.
After Club Watt, the piezoelectric floors kept coming. A Tokyo railway station installed a piezoelectric floor that uses kinetic energy to generate 1,400 kW of energy per day—enough to power ticket gates and displays. Toulouse, France, recently became the first city to put pressure-sensitive piezoelectric modules on the sidewalk, generating enough energy to power streetlamps. And the United Kingdom plans to install power-generating tiles on London streets to light up bus stops and pedestrian crossings.
Piezoelectrics are also increasingly becoming common on roads. In 2009, a British supermarket installed kinetic road plates that collect energy from customers driving over road bumps in the store parking lot. The road plates are pushed down by vehicle weight, which creates a rocking motion that turns generators. The system is used to power the supermarket's checkout lines.
In Israel, a company called Innowattech is installing strips of asphalt embedded with piezoelectric materials. According to the company, the generators could produce 1 MWh of electricity from a four lane highway, or enough to power 2,500 homes.
The technology just keeps getting better, too. Last year, Princeton University researchers combined silicone and nanoribbons of lead zirconate titanate to create PZT, an ultra-efficient piezoelectric material that can convert up to 80 percent of mechanical energy into electricity. PZT is 100 times more efficient than quartz. It's so efficient, in fact, that the material could be used to harness energy from the minute vibrations found in items like shoes and clothing. That means a piezoelectric-equipped shirt could potentially charge up your cell phone after a day of  activity.
Piezoelectric sidewalks, roads, and clothing items haven't taken off in a big way quite yet, but they probably will soon. As we become more reliant on having fully-charged gadgets with us at all times, a shirt or pair of shoes that can prevent a device from dying will be incredibly valuable.

Bosch offers $3,000 wireless chargers to Leaf and Volt owners


Bosch recently released an $450 charging solution for EVs, but if you want to go wireless, it's going to cost you a lot more. The company has formed an exclusive partnership with Evatran for the distribution and installation of its wireless chargers for the Nissan Leaf and Chevy Volt. Each Plugless Level 2 Electric Vehicle Charging System (now that's a tongue-twister) costs $2,998 for the Volt and $3,098 for the Leaf, not including taxes and installation fees. It's comprised of a wall-mounted control panel that provides electricity to the parking pad, which transmits power to your vehicle. You've got to admit it's convenient when all you have to do to juice up is park on top of the pad, but would you actually shell out that much cash in the name of convenience when plugging a (cheaper) charger in is no Herculean task?

Tuesday, 14 October 2014

Future of Hydropower: Damless Hydro?

Hydroelectricity was one of the very first technological developments made in US energy industry. Since the first hydroelectric plant opened in 1887 in San Bernadino, California, hydroelectricity had become one of the major sources of electricity production in US as shown in figure 1, second only to coal in its early days [2]. However, the contribution to the total US electricity production from hydropower has been decreasing consistently over the last few decades. The US hydropower has never quite reached its potential.

Figure 1: Timeline of various power production plants in US (1949-2012) [1]

At large scales, hydroelectricity is the most efficient power production technique, reaching efficiency of up to 95% as shown in figure 2 [3],[4]. It is a renewable source of energy which, in fact, helps fight climate change since it does not produce harmful gaseous emissions at a rate anywhere close to what other power plants operating on coal, gas, or oil produce. The advantages of hydropower are countless. It is fueled by water and therefore, it is free and abundant. The fact that it does not rely on any other natural resources, and that water cycle around the world is capable of constant and reliable electricity production, makes it extremely reliable. It is available when needed and can be easily controlled. In addition, large dams built for hydropower plants are a huge asset at the times of flood and drought. They also help maintain the quality of water [5].

Figure 2: Efficiency of various power plants

On the other hand, there are some downsides of hydropower plants, the most problematic of which is the construction of huge dams. Expensive to build dams, not only require operation of such power plants for decades for the payback, but they also cause some alarming environmental concerns. They can cause some serious geological damage. They require accumulation of large water bodies and therefore destroy the habitat around them. Construction of large dams can also alter the natural flow of water, fish migration, and eventually the surrounding ecosystem [6]. Upstream migration of fish can be severely impacted because of this. Hence, it is obvious that most of the concerns relating hydropower are because of the dams.

But, is there a way around this whole issue of building dams? Can we take the most efficient power production system we have and turn it into an even more efficient one? The answer to that maybe a damless hydropower. Researchers have shown that hydropower can be generated without establishment of such dams and therefore negating all the concerns that arise with them.

The only difference between a dam-based and a dam-free hydropower is the presence or the absence of a dam. The same water current turns the turbines which generate electricity. As shown in figure 3, damless hydropower does not need a dam to create pressure and uses natural flow of the river or tide to produce electricity. Such turbines are low head installations that have very minimal environmental impact. The developers of damless hydropower also claim that the blades turn slow enough to allow fish to escape, and therefore do not affect the fish migration the way dams do. Another important advantage of damless hydropower is that the turbines can be site-based and optimized for performing in certain unique situations. Each power plant can be studied on a site by site basis for optimal performance.

Figure 3: A typical damless hydro turbine [7]

Damless hydroelectric production has been studied for quite a while now and researchers have found that installing electricity generating turbines under water is practical. For example, Hydro Green Energy, LLC has been testing a damless hydroelectric power plant in Hastings, Minnesota. A 2007 Electric Power Research Institute study estimated that there is a potential for adding a 300 megawatts of damless hydropower in the US by 2025. Federal Energy Regulatory Commission (FERC) could play an important role in the establishment of damless hydropower in the future since the same challenges of federal and state approvals that apply to the existing dams, apply to the new technologies as well [8].One interesting observation is that the US government is so focused at other renewable sources of energy like wind and solar, it may be overlooking the contributing potential of hydroelectricity. More investment into damless hydro is key to its development into a feasible renewable and clean alternative for power production.

References: